ICT. Ed 515: Computer Architecture

Course no:	ICT. Ed 515	Nature of course: Theoretical + practical
Level: M.Ed.		Credit hours: 3 (2T+1P)
Semester: First		Teaching hours: 64 (32+32)

1. Course Introduction

This course is an advanced level course of computer architecture and organization. It covers topics on both physical design (organization) and logical design (architecture) of the computer. The course comprises recent processor technology, memory technology, pipelining, vector processing, SIMD architecture, multithreaded architecture and instruction level parallelism.

2. General Objectives

The general objectives of this course are as follows.

- To introduce recent processor technology;
- To discuss memory technology;
- To identify pipelining principles;
- To describe vector processing;
- To discuss SIMD Processor;
- To explain multithreaded architecture; and
- To discuss instruction level parallelism.

3. Course Outlines

Specific Objectives	Contents	Teaching Hours
 Differentiate between computer organization and computer architecture Define principle of parallel computing. List up the constraints of conventional computer architecture. Elaborate the state of computing. Explain parallelism in the uniprocessor system. Classify parallel computing architecture; Identify and analyze the performance metrics and measures of parallel processors Explain the structure of the parallel 	 Unit I: Introduction 1.1 Computer organization vs computer architecture 1.2 Parallel computing 1.3 Constraints of conventional computer architecture 1.4 The state of computing 1.5 Evolution of parallel processors 1.6 Parallelism in uniprocessor System 1.7 Multiprocessors and multicomputer 1.8 Parallel architecture classification schemes 	4

	computer system.	1.9	Performance of parallel	
			processors – metrics and	
			measures	
		1.10	Structure of parallel computers	
•	Explain the advanced processor	Unit I	I: Processors	
	technology			
•	Identify and explain the components of	2.1	Introduction	
	processor organization.	2.2	Advanced processor technology	
•	Explain register organization.	2.3	Processor organization	
•	Describe instruction set architecture.	2.4	Register organization	
•	List and explain addressing modes with	2.5	Instruction set architecture	6
	their applications.	2.6	Instruction formats and	_
•	Compare and Contrast between RISC	2 7	addressing modes	
	and CISC Scaler processors.	2.7		
•	Describe and differentiate between	28	Super scalar and VLIW	
	super scaler and VLIW architecture.	2.0	architecture	
•	Explain vector, array and symbolic	29	Vector array and symbolic	
	processors.	2.5	processors	
•	Explain inclusion, coherence and	Unit	II: Memory Technology	
	locality of reference			
•	Explain and implement page	3.1	Hierarchical memory technology	
	replacement algorithms	3.2	Inclusion, coherence and locality	
•	Explain the cache design and		of reference	
	performance issues	3.3	Virtual memory technology	
•	Describe shared memory organization	3.4	Page replacement algorithms	4
•	Describe multicore architecture	3.5	Cache memory	
•	Identify the cache coherence problem	3.6	Elements of cache design	
		3.7	Cache performance issues	
		3.8	Shared Memory organization	
		3.9	Multicore architecture and cache	
	Fundational and a state of a tradition of the	11	conerence problem	
•	Explain the principles of pipelining with	Unit	v: Pipelining	
	Identify linear and poplinger pipeling	41	Introduction	
•	needed and nonlinear pipeline	4.2	Pipelining principles and	
	Classify the nineline processor		implementations	
	Compare and contract between design	4.3	Linear and non-linear pipeline	
	of arithmetic and instruction ninelines		processor	6
•	Identify pipeline hazards	4.4	Classification of pipeline	
•	Explain dynamic instruction scheduling		processor	
•	Identify the advanced ninelining	4.5	Arithmetic pipeline design	
	techniques	4.6	Instruction pipeline design	
		4.7	Pipelining hazards	
		4.8	Dynamic instruction scheduling	
		4.9	Advance pipelining	
•	Explain the vector processing principles	Unit	V: Multivector and SIMD	
•	Discuss multivector multiprocessor.	Comp	outers	
•	Identify compound vector processing	F 2	Vector processing principles	4
•	Explain the SIMD architecture	5.2 5.2	Multivector multiprocessor	
•	Explain the SIMD interconnection	5.5	Compound vector processing	
		J.4	compound vector processing	1

	network.	5.5	SIMD architecture	
•	Discuss the SIMD parallel algorithms.	5.6	SIMD interconnection network	
		5.7	SIMD parallel algorithms	
•	Define the multithreaded computer	Unit	/I: Multithreaded Architecture	
	architecture	6.4		
٠	Explain the latency hiding techniques	6.1	Latency hiding techniques	4
٠	Demonstrate the scalable	6.2	Scalable multithreaded	4
	multithreaded architecture		architecture	
•	Describe cluster computing	6.3	Cluster computing	
•	Describe neural computing.	6.4	Neural computing	
٠	Describe instruction level parallelism	Unit V	/II: Instruction Level Parallelism	
•	Identify the basic ILP design issues			
•	Describe the model of the typical	7.1	Introduction	
	processor	7.2	Basic design issues	
•	Analyze Tomasulo's algorithm	7.3	Problem definition	4
•	Flaborate the branch prediction	7.4	Model of typical processor	-
-	technique	7.5	Tomasulo's algorithm	
	Describe thread level parallelism	7.6	Branch prediction	
•	Find out the recent trends in the	7.7	Thread level parallelism	
•	parallel system	7.8	Trends in the parallel system	

Part II: Practical [32 Hours]

Case Study and Laboratory Work:

Case Study:

- 1. Pentium processor(CISC)
- 2. SPARC(RISC)
- 3. Cray family and cray-1

Practical Work

1. Measure the performance of the processor.

2. Write a program describing the basic instruction addressing modes.

3. Write a program to implement page replacement algorithms and analyze the performance of the algorithms.

4. Simulate an arithmetic and an instruction pipelining.

- 5.Implement the SIMD parallel algorithms.
- 6. Perform a matrix multiplication.

7. Simulate an instruction level parallelism.

4. Instructional Techniques

The instructional techniques for this course are divided into two groups. The first group consists of general instructional techniques applicable to most of the units. The second group consists of the specific instructional techniques applicable to specific units.

4.1 General Techniques

• Providing the reading materials to the students to familiarize the units.

• Lecture, question-answer, discussion, brainstorming, practical, and buzz sessions.

Unit	Activity and instructional techniques	Teaching (80)	Hours
I to VI	Lecture, discussion, practical		

4.2 Specific Instructional Techniques

Note: Specific instructional techniques may or may not be required for each of the units mentioned in the course outline.

5. Evaluation Evaluation (Internal Assessment and External Assessment)

Nature of course	Internal Assessment	External Practical Exam/Viva	Semester Examination	Total Marks
Theory	40%	20%	40%	100%

Note: Students must pass separately in internal assessment, external practical exam / viva voce and the semester examination.

17.1 Evaluation for Part I (Theory) a. Internal Evaluation (40%)

The internal evaluation will be conducted by the course teacher based on the following activities.

6)	Attendance	5 points
7)	Participation in learning activities	5 points
8)	First assessment (written assignment)	10 points
9)	Second assessment (Term examination)	10 points
10)	Third assessment (Internal practical exam/case study)	10 points
Г	Total	40 points

Note: The first assignment/assessment might be book review /article review, quiz, home assignment etc. according to the nature of the course. The second assignment/assessment might be project work, case study, seminar, survey/field study and individual/group report writing, term paper based on secondary data or review of literature and documents etc., and the third assignment will be a term exam.

b. External Evaluation (Final Examination) (40%)

The Examination Division, Office of the Dean, Faculty of Education will conduct the final examination at the end of the semester.

- 1) Objective type question (Multiple choice questions10x1mark) 10 marks
- 2) Short answer questions (6 questions x 5 marks) 30 marks

Total	40 marks

17.2 Evaluation for part II (practical) (20%)

Nature of the	Semester final examination by	Total percent
course	External Examiner	
Practical	100%	100 %

5.2.1. Practical Examination Evaluation Scheme

- a) External assessment100%
 - i) Record book 20%
 - ii) Laboratory work exam/case......40%
 - iii) Viva voce.....40%

6. Recommended books and reading materials (including relevant published articles in national and international journals)

- i. Hwang, K. & Jotwani, N. *Advanced Computer Architecture (Parallelism, Scalability, Programmability),* 2nd Edition, Mcgraw-Hill Education.
- ii. Chopra, R. *Advanced computer architecture* (A Practical Approach) 1st Edition, S. CHAND, New Delhi
- iii. Stalling, W. *Computer organization and architecture* 10th edition, Prentice-Hall India Limited, New Delhi.
- iv. Tanenbaum, A.S. *Structured computer organization*, Prentice Hall India Limited, New Delhi.
- v. Mano, M. M.: *Computer system architecture*, Latest Edition.
- vi. . Hayes, J. P.: Computer Architecture and Organization, Latest Edition.

ICT. Ed 516: Java Programming

Course no. : ICT. Ed 516	Nature of the course: Theoretical + Practical
Level: M.Ed.	Credit hours: 3 (2T+1P)
Semester: First	Teaching hours: 64 (32+32)

1. Course Introduction

This course is a study on Java language techniques beyond the introductory coursewhich basically focuses GUI and event-driven programming, database connectivity, socket programming, distributed programming and servlets and JSP technology.

2. Course Objectives

After the completion of this course, the students should be able to:

- Introduce Basic Java Programming
- Exemplify the concept of GUI programming and JDBC
- Demonstrate socket programming. remote objects, and JSP technology

3. Course Outlines:

Specific Objectives		Contents	Teaching Hours
•	Review of the object- oriented concept using JAVA language. Demonstrate object- oriented concepts in including array, class, object, overloading, inheritance, interface package and files.	 Unit 1: Review of Programming Concepts in Java 1.1. Java architecture, Java buzzwords, path and classpath variables, Sample Java program, compiling and running Java programs. 1.2. Arrays, for each loop, class and object, overloading, access privileges, interface, inner class, final and static modifiers, packages, inheritance, overriding. 1.3. Handling exceptions: Try, catch, finally, throws, and throw keywords, creating exception class 1.4. Concurrency: Introduction, thread states, writing multithreaded programs, thread properties, thread synchronization, thread states, Eile, Reading and Writing Objects. Practical Work Array, class, object, overloading, inheritance, interface, package, files 	12
•	Describe the user interface in Java. Handle the GUI control Create a menu, toolbar	Unit 2: User Interface Components with Swing2.1. Introduction: Concept of AWT, AWT vsswing, Java applets, applet life cycle, swing class	12

	and taskbar	hierarchy, component and containers	
•	Demonstrate GUIS	2.2 Lovent monogoment: No lovent flow lovent	
	components	border layout grid layout gridbag layout	
		bordor huyout, grid huyout, gridoug huyout	
		2.3. GUI Controls: Text fields, password fields, text	
		areas, scroll pane, labels, check boxes, radio buttons,	
		borders, combo boxes, sliders	
		2.4 Menu menu item icons in menu items check	
		box and radio buttons in menu items, pop-up menus,	
		keyboard mnemonics and accelerators, enabling and	
		disabling menu items, toolbars, tooltips	
		2.5 Option dialogs creating dialogs file choosers	
		color choosers, internal frames, frames.	
		Practical Work	
		• Components, containers, layout managers,	
	_	menus, dialog boxes,	
•	Demonstrate an event	Unit 3: Event Handling	4
	JAVA	3.1. Event handling concept, listener interfaces.	
•	Demonstrate GUIS	using action commands, adapter classes	
	components		
		3.2. Handling action events, key events, focus	
		events, mouse event, window event, item events	
		Practical Work	
		• Listener interfaces, adapter classes	
•	Describe a database	Unit 4: Database Connectivity	6
	connection concept using IAVA and IDBC	4.1. JDBC architecture, JDBC driver types, JDBC	
•	Demonstrate JDBC and	configuration managing connections	
	DDL, DML statements.	etatemente multi et COL esperitione	
		statements, result set, SQL exceptions	
		4.2. DDL and DML operations using Java,	
		prepared statements, multiple results	
		transactions, SQL escapes.	
		Practical Work	
		• JDBC steps, using DDL and DML statements	
•	Explain the network	Unit 5: Network Programming	6
	programming using	5.1 Transmission control protocol (TCP) User	
	protocols.	datagram protocol (IDD) ports ID address	
•	Demonstrate socket	datagram protocol (ODF), ports, ir address	
	programming with	network classes in JDK	

	connection class.	5.2. Socket programming using TCP, socket	
		programming using UDP, working with	
		URL's, working with URL connection class.	
		Practical Work	
		• Socket programming with TCP and UDP, URL	
		and URL connection class	4
•	JavaFX concept.	Unit 6: GUI with Javar X	4
•	Demonstrate a layouts,	6.1. Introduction, JavaFX vs swing, JavaFX	
	control, menu, dialog	layouts: FlowPane, BorderPane, Hbox, VBox,	
	dox using JavaFX.	GridPane	
		6.2. JavaFX UI Controls: Label, TextField, Button,	
		RadioButton, CheckBox, hyperlink, menu,	
		tooltip, FileChooser.	
		Practical Work	
		• Layouts, controls, menus, dialog box	
•	Explain the servlet and	Unit 7: Servlets and Java Server pages	14
•	server pages Demonstrate a servlet	7.1. Web container, introduction to servlets, life	
	programing	cycle of servlets, the servlet APIs, writing	
•	Demonstrate a JDBC	srvlet programs, readingform parameters,	
•	Demonstrate a JDBC	processing forms, handling HTTP request and	
	and JSP.	response (GET / POST request) database	
		access with servlets handling cookies	
		7.2 Servlet vs ISD ISD access model ISD syntax	
		(directions declarations expression seriplets	
		(directions, declarations, expression, scripters,	
		comments), JSP implicit objects, object scope,	
		processing forms, database access with JSP.	
		Practical Work	
		Creating forms, processing forms, JDBC and	
		servlets, JDBC and JSP	
•	Describe the RMI and	Unit 8: RMI and CORBA	6
•	Describe the CORBA	8.1 Introduction to RMI, architecture of RMI,	
	and architecture.	creating and executing RMI applications	
•	Demonstrate the RMI	8.2 Introduction to CORBA, RMI vs CORBA.	
	program.	architecture of CORBA, concept of IDL.	
1			

Practical Work	-
RMI programs	

9 Instructional Techniques

The instructional techniques for this course are divided into two groups. The first group consists of general instructional techniques applicable to most of the units. The second group consists of specific instructional techniques applicable to particular units.

4.1 General Techniques

Reading materials will be provided to students in each unit. Lecture, discussion, use of multimedia projector, brain storming will be used in all units.

4.2 Specific Instructional Techniques

Demonstration is an essential instructional technique for all units in this course the during teaching learning process. Specifically, demonstration with practical work will be a specific instructional technique in this course. The details of suggested instructional techniques are presented below

Laboratory Work: The students need to write programs related to basic java programming concepts, designing GUI, event handling, JDBC, network programming, web programming, and distributed programming.

5.	Evaluation			
	Internal	External	Semester	Total Marks
	Assessment	Practical	Examination	
		Exam/Viva		
	40 Points	20 Points	40 Points	100 Points

Note: Students must pass separately in the internal assessment, the external practical exam and the semester examination.

5.1 Internal Evaluation (40 Points)

The internal evaluation will be conducted by the subject teacher based on the following criteria.

11) Class attendance	5 poi	nts
12) Learning activities and class performance		5 points
13) First assignment (written assignment)	10 poin	ts
14) Second assignment (Case study/project work with presentation)	10 points
15) Terminal examination		10 Points

5.2 Semester Examination (40 Points)

The Examination Division, Dean's Office, Faculty of Education will conduct the final examination at the end of the semester.

- 3) Objective questions (multiple choice 10 questions x 1mark) 10 Points
- 4) Subjective answer questions (6 questions x 5 marks)30 PointsTotal40points40

5.3 External Practical Exam/Viva (20 Points)

The Examination Division, Dean's Office, Faculty of Educatuin will conduct the final practical examination at the end of the semester.

10 Recommended books and Reference materials (including relevant published articles in national and international journals)

Recommended books

- 1. Horstmann, C.S. (2018). Core java volume I—Fundamentals (11th Edition) Pearson,
- 2. Horstmann, C. S. (2019). Core java volume II-Advance features, Pearson.
- 3. Schildt, H. (2018). *Java: The complete reference* (11th Edition). McGraw-Hill Education.
- 1. D.T. Editorial Services (2015), Java 8 programming Black Book. Dreamtech Press.

ICT. Ed 517: Educational Technology

Course code: ICT. Ed 517 Level: M.Ed. Semester: First Nature of the course: Theoretical Credit hour: 3 Teaching hours: 48

1. Course Introduction

This course aims at giving the students exposure to educational technology and influencing the 21st century teaching learning environment. It also helps to investigate the process of analyzing, designing, developing, implementing, and evaluating the instructional environment and learning materials to improve teaching and learning. The course includes fundamentals of educational technology, disruptive educational technology, educational philosophy and technological framework, technology-based instructional design and national policy and plan. The students are expected to learn the contents working on the problem-based inquiry approach.

2. General Objectives

The general objectives of the course are as follows.

- To explain educational technology and its impacts on learners, classrooms and schools,
- To describe the disruptive educational technology used in the education system,
- To explore the application of educational technology in curriculum development, epedagogy, assessment and evaluation,
- To explain technology integration in instructional design, and
- To define the government policy and plan about educational technology in the local context.

	Specific Objectives	Contents
•	Define educational technology for teaching learning Describe 21 st century learning environment Explore the students' engagement in web 2.0, e- learning 3.0 and social media, Compare online vs. blended learning modes. Define the re-structuring of school system	 Unit 1: Educational Technology and Changing shape of Education (10) 1.1 Introduction to educational technology 1.2 Types of educational technology 1.3 21st century learning technology and learners 1.4 Elements of 21st century learning environments 1.5 Engaging learners in ICT and connecting them using Web 2.0 and e-learning 3.0 Tools 1.6 Engaging learners in social media, multimedia and its impacts. 1.7 Issues of online and blended learning 1.8 Reforming the school system: re-schooling, de- schooling

3. Specific objectives and contents

•	To become familiar with different disruptive technologies Explore the application of AI, AR, VR to education Discuss the educational cloud services in education. Explore the use of IoT and mobile technology, gamification and simulation in learning.	 Unit 2: Disruptive Educational Technologies (10) 2.1 Application of Artificial Intelligence in teaching learning 2.2 Virtual Reality (AR) and Augmented Reality in teaching learning 2.3 Cloud services in education 2.4 Internet of things (IoT) in the classroom 2.5 Application of mobile technology to teaching and learning. 2.6 Gamification and simulation in teaching and learning
•	Explain the theories of ICT education in relation to general education theories Discuss the PBS model Explore the TPACK, TIM, triple E framework. Apply the SAMAR model in the teaching and learning process	 Unit 3: Educational Philosophy and Technological Framework (10) 3.1 Philosophy of ICT education: epistemology, ontology and methodology in learning 3.2 ICT education theories from the perspective of different schools of psychology: Behaviourism, Cognitivism, Constructivism, Connectivism 3.3 Problem-based vs project-based learning 3.4 TPACK Framework and practices 3.5 TIM (Technology integration matrix) framework 3.6 SAMR (substitution, augmentation, modification, redefinition) model 3.7 Triple E (engagement, enhancement and extension) framework
• • • •	Explore the ICT instruction design model Demonstrate material development and educational technology Explore the reflection of ICT integration into the curriculum development model. Explore the application of the assessment in the classroom Discuss the evaluation and monitoring model integration	 Unit 4: Instructional Design and Educational Technology (10) 4.1 Integrating Technology and eedia into instructional design: The ASSURE model 4.2 Instructional materials development and integration of educational technology practices 4.3 Reflection of educational technology in curriculum tevelopment 4.4 Reflection of educational Technology in assessment and evaluation. 4.5 Evaluation and monitoring system and integration of educational technology
•	Review ICT based curriculum in school education Explore national and international reports of ICT education and ICT in education Discuss the role of ICT in pandemic situations	Unit 5: ICT in Education practices (8) 5.1 Review of the ICT Education Curriculum at school level 5.2 National Education Policy and Plan on ICT in Education 5.3 SDG 2030 and educational echnology 5.4 UNESCO reports on teacher competency

5.5 The role of educational technology in pandemic
situations

4. Instructional Techniques

4.1 General Techniques

As the nature of the course, the instructor will adopt child-centered learning, particularly the following techniques.

- Lecture and illustration
- Discussion

4.2 Specific Instructional Techniques

Unit	Activity and Instructional Techniques
Ι	Guest lecture, demonstration
II	Overview, lecture
III	Lecture and discussion
IV	Critical analysis of different books
V	Prepare book reviews, conduct seminar and write a long essay

4.3 Evaluation Instruction

5. Evaluation

5.1 Evaluation (Internal Assessment and External Assessment)

Nature of the	Internal	Semester	Total Marks
course	Assessment	Examination	
Theory	40%	60%	100%

Note: The students must pass separately in the internal assessment, the external practical exam / viva and /or the semester examination.

5.2 Evaluation

Internal Evaluation (40%)

The internal evaluation will be conducted by the course teacher based on the following activities

16) Attendance	5 points
17) Participation in learning activities	5 points
18) First assessment(written)	10 points
19) Second assessment(book reviews)	10 points
20) Third assessment (seminar)	10 points
Total	40 points

External Evaluation (60%)

The Examination Division, Office of the Dean, Faculty of Education will conduct the final examination at the end of the semester.

- 5) Objective type questions (Multiple choice 10 questionsx1mark) 10 marks
- 6) Short answer questions (6 questions x 5 marks) 30 marks
- 7) Long answer questions(2 question x 10 mark)20Total60 marks

Recommended books

Kolb, L. (2017). Learning first, technology second: The educator's guide to designing authentic

lessons (First edition). International Society for Technology in Education.

Roblyer, M. D. (2016). Integrating educational technology into teaching (Seventh edition).

Pearson.

Smaldino, S. E., Lowther, D. L., & Russell, J. D. (2012). Instructional technology and media for

learning (10th ed). Boston: Pearson.

Heinich, R.; Molenda, M.; Rusell, J. D. & Smalodino, S. E.(1993). *Instructional media and technologies for learning*. Ohio: Merrill Prentice Hall.

References

Instructional Technology and Media for Learning With Video-enhanced Pearson Etext Access Card.

(2014). Pearson College Div.

Cotterell, A.; Ennals, R. (1988). *Advanced information technology in education and training*. London: Edward Arnold.

Forcier, R. C. & Descy, D. E. (2002). *The computer as an educational tool: productivity and problem solving*. Ohio: Merrill Prentice Hall.

Giardina, M. (1991). Interactive multimedia learning environments. Hongkong: Springer Verlag.

Malik, U. (2000). National seminar on information technology and the school process. Proceedings 16-17 Feb. 2000. New Delhi: NCRT.

Mckay, E. (ed). (2007). *Enhancing learning through human computer interaction*. London: Idea group reference.

Scanlon, E. & O'shea, T. (1987). Educational computing. NY: John Wiley and Sons.

Sharp, V. (4th ed). Computer education for teachers. New York: Mcgrow Hill.

Trend, R.; Davis, N.; & Loveless, A. (1999). *Information and communication technology*. London: Letts.

ICT. Ed 518: Advanced Operating System

Nature of the course: Theoretical +
Credit hours: 3 (2+1)
Teaching hours: 64(32Th.+32Pr.)

1. Course Description

This course is designed to acquaint the students with the knowledge of the fundamentals of computer operating systems, their role, and their design and implementation aspects.

2. General Objectives

The general objectives of this course are as follows.

- To provide the basics of operating systems,
- To study and apply concepts relating to an Operating System such as Process, Thread management, Memory Management, File Systems, I/O management, distributed systems, and
- To familiarize the students with the foundations and design principles of modern operating system.

3. Course Outlines

Specific Objectives	Contents	Teaching Hours
 Review the historical development of Operating Systems and Discuss the role and functionality of Operating System Discuss different types Operating Systems and their structure 	 Principles of Operation System 1.1. Introduction andistory of OS 1.2. Operating system: Concepts and functionalities 1.3. Operating system: Structure, system calls, system programs and system structure 1.4. Types and functions of operating systems 	2hr TH+ 2hr PR
 Clarify the concept of process and thread, their differences and their structure and working mechanism Discuss the serialization and access control 	 2. Processes and Threads 2.1 Process and thread concepts 2.2 Concurrent processes: Introduction, parallel processing, pseudo parallelism 2.3 Communication in client server systems 2.4 Critical regions and conditions, mutual exclusion, mutual exclusion primitives and 	8hr TH +6 Hr PR

 mechanism shared reso Discuss the problems a solutions to problems r deadlocks 	n of implen ources consur e semap and synchr related to 2.5 Deadlo Introdu avoida Starvat 2.6 Thread and ke usage, model.	nentation, locks, producer and mer problem, monitors, use or hors to implement mutex, process conization and classical IPC problems, ock and Indefinite Postponement uction, Preemptable and eemptable Resources, Conditions for ock, deadlock modelling, prevention nce, detection and recovery tion, ds: Introduction, threading issues, user ernel threads, thread model, thread advantages of threads, multithreading	
 Analyse th a kernel as important p operating s Elucidate t responsibil structure o kernel and 	te role of being an part of an system 3. Kernel 3.1 Introdu 3.2 Contex mode)he role, lities and of a its types 3. Kernel 3.2 Contex mode)3.3 Types and mi 3.4 Re-ent interru 3.5 Kernel	action and architecture at switching (kernel mode and user of kernel (monolithic/macro kernel acro/exo-kernel) rant kernels, interrupts, timer pts implementation of processes	2 Hr TH +2 Hr PR
 Discuss the approaches the schedu jobs and processes Review diff types of sc algorithms scheduling processes 	e 4. Schedu s used for ling of schedu rocesses criteria fferent 4.2 Proces pre-em used for 4.3 Schedu g jobs and deadlir schedu shortes schedu	ling action: Job and processor scheduling uling levels, scheduling objectives and a, quantum size, s hierarchies, pre-emptive versus nor optive scheduling uling techniques: Priority scheduling he scheduling, first-n-oirst-out uling, Round Robin scheduling, st-job-first(SJF)scheduling, st-remaining-time(SRT) uling	3Hr TH + 4 Hr PR
 Discuss an the way an operating s manages m efficiently operation Discuss the of virtual manageme concept for effective a 	ad analyse5. Memoryad the5.1 Memoryad the5.1 Memorysystemstoragenemorycontigufor its5.2 Swapp5.3 Fixedpartiticnemoryprotectnemory5.4 Virtualr the5.4.1 Adllocationpage	y Management ry organization and management e allocation, contiguous and non- uous memory allocation ping, segmentation, fragmentation partition multiprogramming, variable on multiprogramming, relocation and tion I memory dress mapping, background demand ging	4 HR TH +2 Hr PR

of memory for	5.4.2 Paging and page replacement algorithms:	
annlications	FIFO, LRU OPR etc 5.4.3 Virtual storage management, allocation of	
applications	frames	
	5 4 4 Thrashing	
• Discuss the ways	6. Input/output	4 Hr TH + 4
that an Operating	6.1. Introduction	Hr PR
System handles I/O	6.2. I/O devices, device drivers, memory-	
hardware, the role	mapped I/O, DMA (Direct memory	
of device drivers	access), principles of I/O software:	
for interfacing	pPolled I/O versus interrupt driven I/O,	
purpose	6.3. Block and character devices,	
	6.4. Disk scheduling: Seek time, transfer	
	time, disk scheduling algorithms	
• Discuss the concept	7. File Systems	3 Hr TH +
of file systems and	7.1 File organization: Blocking and buffering,	4Hr PR
directory structures	file descriptors, file naming, file structure, file	
used by an	types, file access, file	
operating system	attributes, file operations	
for efficient data	7.2 Access m ethods: Sequential, direct,	
storage and retrieval	ACL (access control list)	
purpose	7.3 Directories, directory structure, blocks	
	and fragments, directory free	
	7.4 File descriptors, file system	
	linked list allocation. Lindes, security	
	and multi-media files	
• Analyse the (222)	8 Distributed Operating System	6 Hr TH + 2
• Analyse the (???)	8.1 Introduction advantages and disadvantages	Hr PR
	of distributed operating system goals	
	network architecture hardware and software	
	concepts	
	8.2 Communication in distributed systems. ATM	
	(asynchronous transfer mode).	
	8.3 Lavered protocols, client-server model, RPC	
	(remote procedure call), group	
	communication, processes and processors in	
	distributed system,	
	8.4 Clock synchronization, scheduling in	
	distributed system.	
	9. Case Studies	8 Hr PR
	Case study of IPC, process scheduling and	
	synchronization, file system, I/O, memory	
	management etc in various platforms like	
	Unix, Linux, DOS, Window NT	

The practical aspect will focus on the implementation of the concepts covered in the lecture class using a programming language (e.g. C or Java) and a particular platform/OS (e.g. Linux)

4.1.2 List of Laboratory Work

- Introduction to process, threads, system calls, shell, kernel, user interface of anoperating system
- Implementation of process scheduling algorithms
- Implementation of IPC using buffers
- Implementation of mutex, semaphors, monitors
- Implementation of memory and resource management schemes and algorithms
- Implementation of deadlock prevention algorithms

4. Instructional Techniques

The instructional techniques for this course are divided into two groups. The first group consists of general instructional techniques applicable to most of the units. The second group consists of specific instructional techniques applicable to specific units.

4.1 General Techniques

- Providing the reading materials to the students to familiarize the units.
- Lecture, question-answer, discussion, brainstorming, practical, and buzz session.

Unit	Activity and instructional techniques	Teaching (30)	Hours
l to XII	Lecture, discussion, practical		

4.2 Specific Instructional Techniques

Note: The specific instructional techniques may or may not be required for each of the units mentioned in the course outlines.

18. Evaluation (Internal Assessment and External Assessment)

Nature of	Internal	External Practical	Semester	Total Marks
course	Assessment	Exam/Viva	Examination	
Theory	40%	20%	40%	100%

Note: The students must pass separately in the internal assessment, the external practical exam / viva and/or the semester examination.

5. Evaluation for Part I (Theory)

b. Internal Evaluation 40%

The internal evaluation will be conducted by the course teacher based on the following activities.

21) Attendance	5 points
22) Participation in learning activities	5 points
23) First assessment (written assignment)	10 points
24) Second assessment (term examination)	10 points
25) Third assessment (internal practical exam/case study)	10 points
Total	40 points

Note: The first assignment/assessment might be book review /article review, quiz, home assignment etc. according to the nature of the course. The second assignment/assessment might be project work, case study, seminar, survey/field study and individual/group report writing, term paper based on the secondary data or review of literature and documents etc and the third assignment will be the term exam.

b. External Evaluation (Final Examination) (40%)

The Examination Division, Office of the Dean, Faculty of Education will conduct the final examination at the end of the semester.

- 8) Objective type question (multiple choice, 10 questionsx1mark) 10 marks
- 9) Short answer questions (6 questions x 5 marks) 30 marks

Total	40 marks

18.1 **Evaluation for part II (practical) (20%)**

Nature of the	Semester/ final examination by external	Total percent
course	examiner	
Practical	100%	100 %

5.2.2. Practical Examination Evaluation Scheme

- b) External assessment100%
 - iv) Record book 20%
 - v) Laboratory work exam/case.....40%
 - vi) Viva voce.....40%

6. Recommended books and reading materials (including relevant articles published in national and international journals)

Tanenbaum, A. S. (2006). *Operating systems: design and implementation* (3rd ed.). Upper Saddle River, N.J: Pearson/Prentice Hall.

7. Reference materials

- Bhatt, P. C. P. (2010). *Introduction to operating systems: concepts and practice*. [S.I.]: Phi Learning.
- Silberschatz, A. (2010). *Operating system concepts with Java* (8th ed.). Hoboken, NJ: John Wiley & Sons.
- Stallings, W. (2009). *Operating systems: internals and design principles*. Upper Saddle River, N.J.: Pearson/Prentice Hall.
- Tanenbaum, A. S. (2008). Modern operating systems (3rd ed.). Upper Saddle River, N.J: Pearson/Prentice Hall.